MTH 167 Precalculus with Trigonometry Formula Sheet

Distance Formula

The distance d between the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint Formula

The midpoint M of the line segment connecting the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is:

$$
M=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)
$$

Quadratic Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Point-Slope form of a line: $\quad y-y_{1}=m\left(x-x_{1}\right)$
Parallel lines have the same slope: $m_{1}=m_{2}$
Perpendicular lines have negative reciprocal slopes: $m_{1}=-\frac{1}{m_{2}}$

Exponential and Logarithmic Formulas

Interest equations: $A=P e^{r t}$

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Growth and Decay: $A=A_{0} e^{k t}$
Change of Base $\quad \log _{a} x=\frac{\log _{b} x}{\log _{b} a}$

Conic Sections

Standard Equations for Parabolas

Horizontal axis (opens left/right)	Vertical axis (opens up/down)
$(y-k)^{2}=4 p(x-h)$	$(x-h)^{2}=4 p(y-k)$
If $p>0$ it opens right	If $p>0$ it opens up
If $p<0$ it opens left	If $p<0$ it opens down

Vertex always located at (h, k).
Focus: p units from the vertex on the axis of symetry.
Directrix: p units from the vertex.

Standard Equations for Ellipse

Center always located at (h, k).
$\left.\begin{array}{l}\text { Major axis length: } 2 a \\ \text { Minor axis length: } 2 b\end{array}\right\} 0<b<a$.

Horizontal major axis.	Vertical major axis.
$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$	$\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$

The foci lie on the major axis c units from the center with

$$
c^{2}=a^{2}-b^{2}
$$

Standard Equations for Hyperbola

Center always located at (h, k).
Transverse axis length: $2 a$
Conjugate axis length: $2 b\} a>0$ and $b>0$
Horizontal transverse axis. (x-intercepts) \mid Vertical transverse axis. (y-intercepts)

$$
\begin{array}{l|l}
\hline \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 & \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
\end{array}
$$

The foci lie on the transverse axis c units from the center with

$$
c^{2}=a^{2}+b^{2} .
$$

The asymptote "box" for drawing is determined by $\pm a$ along the transverse axis from the center $\pm b$ along the conjugate axis from the center

Trigonometric Formulas

Sum and Difference Formulas

$$
\begin{array}{ll}
\sin (u+v)=\sin (u) \cos (v)+\cos (u) \sin (v) & \cos (u+v)=\cos (u) \cos (v)-\sin (u) \sin (v) \\
\sin (u-v)=\sin (u) \cos (v)-\cos (u) \sin (v) & \cos (u-v)=\cos (u) \cos (v)+\sin (u) \sin (v) \\
\tan (u+v)=\frac{\tan (u)+\tan (v)}{1-\tan (u) \tan (v)} & \tan (u-v)=\frac{\tan (u)-\tan (v)}{1+\tan (u) \tan (v)}
\end{array}
$$

Double Angle Formulas

$$
\begin{aligned}
& \sin (2 u)=2 \sin (u) \cos (u) \\
& \tan (2 u)=\frac{2 \tan (u)}{1-\tan ^{2}(u)}
\end{aligned}
$$

$$
\begin{aligned}
\cos (2 u) & =\cos ^{2}(u)-\sin ^{2}(u) \\
& =2 \cos ^{2}(u)-1 \\
& =1-2 \sin ^{2}(u)
\end{aligned}
$$

Half Angle Formulas

$$
\begin{array}{ll}
\sin \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1-\cos (u)}{2}} & \cos \left(\frac{u}{2}\right)= \pm \sqrt{\frac{1+\cos (u)}{2}} \\
\tan \left(\frac{u}{2}\right)=\frac{1-\cos (u)}{\sin (u)}=\frac{\sin (u)}{1+\cos (u)} &
\end{array}
$$

$\cos ^{2} u=\frac{1+\cos 2 u}{2}$

Polar Coordinate Conversions

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta \\
x^{2}+y^{2}=r^{2}
\end{gathered}
$$

Law of Sines:

$$
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}
$$

Law of Cosines:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
$$

